Blurred Palmprint Recognition Based on Stable-Feature Extraction Using a Vese–Osher Decomposition Model
نویسندگان
چکیده
As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese-Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred-PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition.
منابع مشابه
A comparison of three total variation based texture extraction models q
This paper qualitatively compares three recently proposed models for signal/image texture extraction based on total variation minimization: the Meyer [27], Vese–Osher (VO) [35], and TV-L [12,38,2–4,29–31] models. We formulate discrete versions of these models as second-order cone programs (SOCPs) which can be solved efficiently by interior-point methods. Our experiments with these models on 1D ...
متن کاملA comparison of three total variation based texture extraction models
This paper qualitatively compares three recently proposed models for signal/image texture extraction based on total variation minimization: the Meyer [27], Vese-Osher (VO) [35], and TV-L1 [12,38,2–4,29–31] models. We formulate discrete versions of these models as second-order cone programs (SOCPs) which can be solved efficiently by interior-point methods. Our experiments with these models on 1D...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملDirectional global three-part image decomposition
We consider the task of image decomposition and we introduce a new model coined directional global three-part decomposition (DG3PD) for solving it. As key ingredients of the DG3PD model, we introduce a discrete multi-directional total variation norm and a discrete multi-directional G-norm. Using these novel norms, the proposed discrete DG3PD model can decompose an image into two parts or into t...
متن کاملPalmprint Recognition Using Geometrical and Statistical Constraints
This paper proposes an efficient biometrics system based on palmprint. Palmprint ROI is transformed using proposed local edge pattern (LEP). Corner like features are extracted from the enhanced palmprint images as they are stable and highly discriminative. It has also proposed a distance measure that uses some geometrical and statistical constraints to track corner feature points between two pa...
متن کامل